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The first fundamental boundary-value problem of elasticity theory is considered for a rectangular 

semi-infinite strip whose long sides are free of stress. Separation of variables is used to reduce the solution 

to a series expansion of two functions defined in a closed interval (the “end” of the half-strip), in terms of 

homogeneous solutions. The system of homogeneous solutions over an interval of the real axis is proved to 

be complete in L,. Systems of functions biorthogonal to the systems of homogeneous solutions are 

constructed on a certain contour on the Riemann surface of the logarithm. This biorthogonahty concept is a 

natural generalization of biorthogonality over a closed interval. The biorthogonal systems constructed are 

used to find explicit expressions for the expansion coefficients. 

1. STATEMENT OF THE PROBLEM 

WE WILL consider the solution of the first fundamental problem of elasticity theory in a half-strip 
(( y 1 d 1, 0 d x < to). We shall assume that the long sides of the half-strip are unstressed: 

o‘y (x, _tl) = rq/ (5, &-I) = 0 (1.1) 

while the end surface {x = 0, y E (- 1, l)} is subject to the following stresses: 

Cc (Y) = a (Y)? rxv (Y) = B (Y), Y E (-19 1) (1.2) 

We will confine ourselves to symmetric deformations of 
solutions which decay at infinity (x-+ ml>: 

1 

s a(Y)dY =0 
--I 

the half-strip. Then, in the class of 

Using separation of variables [ 11, we can reduce the boundary-value problem to the expansions 

a (Y) = kiI 2 Re @khkak (d) 

p(y) = kjl 2 Re (akhka ‘6k (y)),. y E (- I,. I),. ak E c (1.3) 
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in which 
crlr (y) = (sin 3Lk - hL cos h,) cos hky - h&y sin hk sin hky 

zk (y) = cos hl, sin hky - y sin hk cc9 &y 
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(1.4) 

The numbers {hk}tZ1 = A are all the complex zeros of the entire function 

L (A) = A + sin h co9 h (1.5) 

There are a great many approximate methods of determining the unknowns {uk, ti, } “k= 1 using the 
expansions (1.3). A survey of these methods may be found in [2,3]. 

In this paper we will construct systems of functions {&, (o)}y=r and cp,, (0) ;=I which are biortho- 
gonal, over a certain contour T in the domain of the complex variable w = x + iy, to the systems 
{uk (w)} F=i and {7/, (0)) z=t , respectively. The functions uk (w) and T/, (0) (ka 1) are continuations 
of uk(y) and am to the o domain. Using biorthogonal systems of functions, we can find explicit 
expressions for the coefficients a k, & of the expansions (1.3), which we shall henceforth call 
biorthogonal expansions. 

2. COMPLETENESS OF SYSTEMS OF REAL SUBSPACES 

IRe@kuk(y))l~z=l AND {Re@k7~(y))l~=1 

We will present a simple proof of the completeness of the system {Re (akTk(y))} z,i in 
L2 (- 1, 1). The completeness of systems of functions similar to (1.4) has been considered, e.g. in 

[4,51. 
We will begin with the basic properties of the function L(A) defined by (1.5). These properties are 

easily established, e.g. using results from [6]. The function L(A) is entire, of completely regular 
growth and of exponential type 2. The indicator diagram of L(A) is the interval [-2,2] on the 
imaginary axis. Its zeros satisfy the asymptotic relation 

Theorem 1. The system of real subspaces {R~(u~T~(~))} :=I (akE C) is complete in L2(-1, 1). 

Proof. Let T(A,~), AEC, supp?(A,y)E[-l,l] be the function generating the system 
{-r/, (y )} ;=I for A E A; let a (A) be any function such that uk = a (Ak). We will first prove that T (A, y ) 
is a closed kernel in L2(-1, l), i.e. there is no compactly supported function x(y) E LZ(-1, 1) 
which is not equivalent to zero and has the property 

1 

s 
Re(a(q2.@, Y))X(Y)dY =09 AEC (2.1) 

-1 

Since a (A) is arbitrary, this is possible if 

1 

s z(h, y)x(y)dy =&hEC (2.2) 
-1 

Solving Eq. (2.2), wefindthatx(y)=c[?i(y+l)--6(y-l)][ c is an arbitrary constant and 6 ( .) is 
the delta-function], so that 7(X, y), and hence also Re(a(A)~(h, y) is a closed kernel in L,(-1, 1). 

Let t(y) (supp[(y)~(-y, y), O<y<l) be a function of compact support in L,(-1, 1) such that 
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Define 

‘: 

J Re(akzk(!d)E(dd!?O? ic>l 

--Y 

Y 
@ (h) = s Re (a (A) z (A, y) E (y) 4.b h E C 

--Y 

By (2.31, @(hk) = 0 (kal). Hence 

(2.3) 

(2.4) 

--Y 

It follows from (2.5) that the entire function P(A) is of type at least 2 [since its zeros are at least all 
the complex zeros of L(X), which is of type 21. 

On the other hand, by the Paley-Wiener Theorem [7], the type of the entire function P(X) is at 
most 1 i-y. By the uniqueness theorem [6, 81, we obtain P(A) =O if y < 1. And since 

Re(a(Qr(U)) 1s a closed kernel in L2 (- 1, l), a standard completeness criterion [Sl implies that 
the system of subspaces {Re(+~~(y))f i;;=t is complete in L;?(-1, 1). 

The completeness of the system {Re(u~~~(y)~~ y,, is proved in a similar way. 

Remark. The completeness of the systems of real subspaces {Re(akok(y))} T=, and 

(Re(+rk(r>)I = 2 t is equivalent to double completeness of the systems {Reuk(y), Imo,(y)}~=, 
and (Rer&), irn~~(y)~ On==, . 

3. GENERALIZED BOREL TRANSFORMS ON THE RIEMANN SURFACE OF THE 

LOGARITHM 

Let G(z) be a quasi-entire function, i.e. [9, lo] a univalent analytic function defined on the 
Riemann surface of the logarithm K(z) = {Z = A+& /argz(<=~, O<lz(<~}. Following [lo], we 
shall say that a quasi-entire (entire) function belongs to class { 1, a) if it is of exponential type da. In 
addition, by analogy with entire functions, a quasi-entire function G(z) f { 1, I> belongs to class W 
if its real part is of at most power growth over the whole real axis and square summable on the 
positive real axis R +. 

Consider a quasi-entire function G(z) E W. Let g(w) be the Bore1 transform of G(Z). As shown 
in [9)? 

G(z) =A! g(o)ez%h, Rez>O 
c 

(3.1) 

where C is a contour in the domain fi= {o=x+iy, /argo/d?r, O</o[<c~} on the Riemann 
surface K(w) = { o=x+iy, largw/< ~,O<~~l<~}.ThecontourCisformedbyrays{~~:~e~r~, 
r>l-tn,q>O} andthecirculararc{C1+,: 101 = (l+r))eiargw, ( arg o ( s IT}. It can be shown that if 
G(z) E W, then the arc Cr,, can be contracted to a rectangular contour TI enclosing the interval 
[ - 1, l] of the imaginary axis, consisting of the vertical intervals {I: x = E, y E [ - 1 - q, 1 + q]} , { 1+: 
x = -F, yEf0, ltn]}, {f-: X- -E, yEf--l--,0]) and the horizontal intervals {y= fn, 
x E I--E, EJ) . An analogue of this assertion is included in the PIancherel-Polya proof of the 
Paley-Wiener Theorem [6]. Denote the contour formed by the rays L’ and the reactangle II by T. 

Let f(y) be an arbitrary compactly supported function in L2 (r) with support in {P: y E (- 1,l)). 
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By the Paley-Wiener Theorem, its Fourier transform F[f](Q is an element of W [7]. 
Let f(o) (w = x + iy) be the Bore1 transform of F[f]. By [6, 81: 

f (0) = 1 F VI (0 e-Em cl%,, E = te-@,, t > 0, 0 < 8 < 2n 
0 

(3.2) 

and the integral exists in the half-plane Re(oe”) >h(-O), where h(-0) is the growth indicator of 
F[f]. All the singularities of f(w) lie in the interval I on the imaginary axis. Thus, formula (3.2) 
associates with any compactly supported function f(y) E L2 (r) a f unction f(m) which is analytic in 
the domain AT. 

Take f(y) = q (y ) cos Ay, where 11 (y ) is the characteristic function of I [ 11. Denote the Bore1 
transform of the entire function F[q (y ) cos Ay] (5) by C(h, w). 

It follows from the Cauchy representation [ll] 

C&o) = s -p&c& OEsz\F,, XEC 
I’ 

(3.3) 

and the Paley-Wiener Theorem that C(h, o) is an entire function of the parameter A in the class W. 

It is also obvious that C(A, m) = 0. 

Proposition 1. Let g(w) be a function analytic on the Riemann surface of the logarithm K(w), all 
of those sheets are cut along the intervals (-1, l] of the imaginary axis and g(m) = 0. If moreover 

g (y) = lim - I [g(iY+s)-_g(iY--s)lEL,(r) 
EyO 2ni 

then the function 

G (4 = & 1 g(o)C(z,o)da 
T 

(3.4) 

is holomorphic in the domain Z = {z+ i<, 1 argz( Cm, O< (z( < m}. The analytic continuation of 
G(z) to K(z) is a quasi-entire function of class W. 

Proof. We will outline the proof. The existence of the integral (3.4) is obvious. It follows from representation 
(3.3) for C(z, w) that the function G(z) exists in the domain Z together with all its derivatives, i.e. it is analytic 
in Z. And since C(z, o) E (1, l} and the integral (3.4) is absolutely convergent, it follows that G(z) E { 1, l}. 

We will show that G(z) is square summable over the positive real axis R+. Contract the contour II to the 
interval F of the imaginary axis. Then 

(3.5) 

Taking into consideration that g(y)E&(I) (by the Paley-Wiener Theorem), we conclude that the integral 
(3.5) is an entire function in the class W. On the rays L’ we have G(A) E Lz(R+), because C(h, 0) E W. 

Thus G(z) is analytic in Z and of class W. It remains to prove that G(z) admits of analytic continuation to the 
Riemann surface K(z), i.e. it is quasi-entire. This is easily done by well-known means [9, lo]. 

By analogy with the case of entire function [S], we shall say that g(o) is C(z, o)-associated with 
the quasi-entire function G(z), and (3.4) will be called the generalized Bore1 integral transform of 
g(o) on the Riemann surface of the logarithm. 

The proof of the following proposition is based on a method used in [12] to construct functions 
which are biorthogonal to certain generalizations of systems of exponential functions. 
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Proposition 2. To every quasi-entire function G(z) E W there corresponds a unique function 
g(w), regular on the contour T and in its exterior, such that (3.4) is true. 

Proposition 3. Let H(z) and G(z) be an entire and a quasi-entire function, respectively, in class 
W, and h(o) and g(o) functions C(z, w)-associated with them. Then the following Parseval-type 
identity holds: 

& g(o)h(o)dw = +-(G(k)H(h)e-2ehdh, s E>O 
0 

(3.6) 

Proof The existence of the integral along T is obvious. The integral on the right also exists since by 
assumption G(X), H(h) E Lz(R+). 

“Stretch” the contour ll along the imaginary axis, downward and upward, to infinity [that this may be done 
follows from the analyticity of g(o) and h(w) outside T]. Denote the extension of the segment 1 to +~a by I, 
and the extension of the segments 1’ to + 03 and - ~0, respectively, by 1,‘. By the Cauchy residue theorem, the 
integrals over the unions of the straight lines I,+ U L+ and I,- U L- vanish, and consequently 

1 S 1 
2ni m)h(o)do=~, S g(& +e)h(iY + 8) d (U + ~1. e>O T 0 (3.7) 

On the other hand, using the representation (3.3) of C(h, o), we obtain 

loo 
n H(i)C(h,o)dIv=h(o), oczQ\T 

s (3.8) 
0 

Substituting (3.8) into the right-hand side of (3.7) and performing some simple algebra (as was done in [ll]), 
we obtain (3.6). 

4. BIORTHOGONAL SYSTEMS OF FUNCTIONS 

Let crk(m) be the functions corresponding to the compactly supported functions ak(y ) (k 3 1) as 
in (3.2). Obviously, 

ax(o) =(sinhk- hl, cos hk) c (hkr. 0) $ hl, sin hk $ (C (k @)I 
k 

OEQ\‘T, k>l. 

(4.1) 

Let {JIy(~)~~~I b e a system of functions analytic on and in the exterior of T, with Q”(m) = 0, 
v b 1. The function 

u (h, 0) = (sin h - ~cosA)~(A,.w)+ hsinh&(C(h,,@)), ?EC% =Q\F’ (4.2) 

generates the system {Us} T=r for AE A. 
Suppose that the following equality holds on the positive real axis h E R +: 

(4.3) 

The interval (4.3) exists in 2. This follows from the representation (4.2) of o(h, o) and 
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Proposition 1. Since the left-hand and right-hand sides of (4.3) are entire functions, the validity of 
these equalities for A E R+ implies their validity throughout Z. Then, setting A = hk, hk E A in (4.3), 
we arrive at = R, (hk), k = V 

k+,, (k, v > 1) (4.4) 

A system of functions {&(o)} yzI satisfying (4.4) is said to be biorthogonal to the system 

{o/c(w)] ;=I . 
Set 

Y,(h) =&s$v(o)C(A,o)do, AER+, v>i (4.5) 
T 

Substituting (4.2) into (4.3), we obtain the following equations for the functions *,,(A): 

(sin h - h cos h)‘Yv (I.) -I- h sin hd’4v (h)ldh = R, (A), h E R+, V > 1 (4.6) 

A particular solution of these equations may be written as 

b R,(I)d~ 
Yv (h) = -y s sins I. ’ 

V>i 

0 
(4.7) 

Hence, using the Mittag-Leffler expansion [13] of the meromorphic function in the integrand, we 
obtain 

OD R (p )l.sinJ. a0 
Yv(Q=-2 pv,[)*:__p,*) +c 

rv (p,) In 1 i - Ppia 1 sin 1 

A 
a=1 

(4.8) 
n=l 

rv (pn) = & (Asa& (A)) 1~~9 Pn = nnt. h E R+, V > 1 

Using bounds IRh)i7 irvh)i, one can show that the series (4.8) are uniformly convergent. 
Let S,,(A), S,,(A), (V 2 1) be the sums of the first and second series in (4.8), respectively. We will 

first consider the second sum S,,(A). The analytic continuation of each term of S,(A) (henceforth we 
will omit the subscript v) is a quasi-entire function in class W. But since the series S2 (A) is uniformly 
convergent, the analytic continuation of its sum S*(z) is a quasi-entire function in W [9]. The 
function S2 (z) may be expressed as 

Sa (4 = Q (2) In 2, Q (4 E W (4.9) 

(this follows from the fact that after the substitution A = +pn (1 - u), (n 2 1) each term of S, (A) can 
be reduced to this form), and hence this function is defined on the Riemann surface K(z). 

Now consider the sum of the first series S1 (A) in (4.8). Since each term of the series is an entire 
function in class W and the series itself is uniformly convergent, Sr (A) E W. 

Let V,,(z) (v> 1) be the analytic continuation of the functions qV(A) to K(Z). As just shown, such 
a continuation exists and is the sum of an entire function and a quasi-entire function in class W. By 
Proposition 2, the existence of the system of functions {?\IIy(z)} F=t implies the existence of the 
C(z, o)-associated system {+,,(o)} ;=I , which satisfies Eqs (4.3), i.e. it is biorthogonal to the system 

{o/c(m)] ;=I. 
The uniqueness of the biorthogonal system is proved as follows. The system of functions 



842 M. D. KOVALENKO 

{&,(o)} ;=I is not unique if the right-hand side of (4.3) can be multiplied by an entire function of 
zero type with no zeros (so as not to affect the completeness of the system of functions 
{Re(akak(y))} ;=I ). By the Phragmen-Lindelof Theorem [6], the only functions meeting these 
requirements are constants. 

The arguments presented above constitute the content of the following theorem. 

Theorem 2. There exists a unique system of functions {IJJ” (0)) :=I which is biorthogonal to the 
system {uk(w)} ;=I in the sense of (4.4). 

A similar construction yields a system of functions {(p,,(o)} TZI biorthogonal on T to the system 
{r”(w)} TY1 . The functions q,(o) are defined by the equations 

z.(~,co) =coshS(h,o)--in-h g- (S (L 4) (4.10) 

Here S(h, w) is the Bore1 transform of the entire function F[-n (y )sin Ay 1. 

5. BIORTHOGONAL EXPANSIONS 

Using the biorthogonal systems {SV (0)) ;=I and { cpv (0)) FE, , we find the coefficients uk , & 
(k 2 l), of expansions (1.3). to that end, we consider the Fourier transforms of (1.3) and then, using 
(3.2), obtain equalities for the Bore1 transforms. Multiplying the first of these equalities by \cI”(w) 
and the second by (p,,(w), integrating along T and using (4.4) and the analogue of the latter for the 

system {G(W)] LIT which follows from (4.10), we obtain a system of two algebraic equations for 
each v 2 1 in the unknowns a,, a,, : 

CL, = 2 Re (a&NV), fh = 2 Re (&.&‘Nv) (5.1) 

and, by (3.6), 

* a,== I&, (0) a (0) do = + 5 Y, (h) F [a] (A) e-aeh dh 
0 

Pv=&S q,(o)fi(o)dw = +i G(h) F[p](h)e-*ekddh, E>O (5.2) 
0 

(aql) =& Srpv(o)S(h,w)dw~ v>l,, ?d+) 
T 

Here o(w) is the function C(X, w)-associated with F[a](h) and p(w) is the function S(h, w)- 
associated with F[P](A). 

Example. We will give a simple example of biorthogonal expansions (1.3). Take a(y) = l/3 =y2, p (y ) = 0. 
Obviously, py = 0 (v> 1). Taking into account that lim~_,&“a(h, y) = l/3 - y 2, we deduce from (4.3)) letting 
A+ 0, that (Y, = 2/l A,* 1. Now, solving the system of equations (5. l), we obtain 

2 XV 

av = Jh,PI ’ N,,I.,, (11, - iiv) 
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The correctness of this solution has been verified by inserting the computed values of the coefficients a, into 
the series (1.3); it turns out that by retaining 25 terms and summing one obtains the limiting function with an 

error not exceeding 3%. 
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